Matlab lesson 2: data input/output and graphics

Instructor: ir drs E.J Boks Elecrical Engineering Embedded Systems Engineering phone:(026) 3658173 Room: D2.03 e-mail:ewout.boks@han.nl

Lesson 2 Graphics

Instructor: ir drs E.J Boks Elecrical Engineering Embedded Systems Engineering phone:(026) 3658173 Room: D2.03 e-mail:ewout.boks@han.nl

Contents

- •Q&A about last session
- •Controlling input and output formatting
- •Graphics plotting and formatting
- •Editing plots
- •Graphics printing and handling
- •GUI design with Matlab
- •Animations in Matlab

Answers to last week

% exercises session 1

% Matlab course

% set of equations

 $A = [2 \ 3 \ -2; 6 \ 5 \ 3; \ -5 \ -3 \ -7];$

b = [5 -12 4]';

% solutions for Ax = b

% solution 1 : using the inverse of the A matrix % x = Ainv*b Ainv = inv(A); x1 = Ainv*b

Answers to last week

% solution 2 : using determinants (Cramer's rule)

% compute the determinant

Adet = det(A);

% first sub solution : substitute b for first column of A

```
\% now x1a = det(Atemp)/det(A)
```

Atemp = [b A(:, 2:3)];

x2(1) = det(Atemp)/Adet;

Atemp = [A(:, 1) b A(:, 3)];

x2(2) = det(Atemp)/Adet;

Atemp = [A(:, 1:2) b];

x2(3) = det(Atemp)/Adet;

% solution 3 using rref

x2

Aref = rref([A b]);

x3 = Aref(:, 4)

Answers to last week

% solution 3 using rref

Aref = rref([A b]);

x3 = Aref(:, 4)

Numeric output formatting

- Format command can be used to format variable output:
- Format short or format short e set output format to 5 digits with or without exp format.
- Format long or format long e set output format to 15 digits, with or without exp format.
- Format hex sets output format to hexadecimal form.

Other input and output commands

- Suppressing output: add a semicolon (;) to your command.
- Add three periods (...) to your command to enable multi-line input.
- Use your cursor keys to repeat or re-edit your previous inputs.
- Use the TAB key to auto-complete a filename or command similar to C shell command completion under Unix.

Graphics Basic function plotting

- Matlab has a very powerful graphics engine to visualize data or function output.
- See on-line help library by typing 'help graphics'.
- Use graphics engine to present output data from your calculations. This is more accessible than raw data output in your command window.

Basic plotting

• Plot function:

plot(a_x,a_y,'colour style marker', b_x,b_y,'colour style marker', c_x,c_y,'colour style marker', ..)

• An example. To plot a modified sine function as a red dash dotted line, enter the cmd: plot(x,x.*sin(2*pi*x),'-.r','LineWidth',2). Do not forget to define an array x first.

The x*sin(x) plot

Labelling and formatting

- Axis labels and titles: xlabel, ylabel and zlabel add labels to the plot axes.
- These labels are of the form label('text') or label('text', property1,property2 etc).
- For adding additional text to the figure, issue the text(x,y,'string') cmd. The parameters x and y constitute the coordinates where the text should go.
- The axis cmd controls the range of the axes.
- The grid cmd displays a grid across the plot.

A labelled Plot

Complex data plotting

- Type 'help plot' to view a complete list of formatting options
- Plotting imaginary data: imaginary part is ignored unless argument is a single complex number, e.g plot(Z) where Z=x+jy or $Z=e^{j\omega t}$

Complex plot

logarithmic data plotting

plots can be made to use a logarithmic scale :

- semilogx() is similar to plot but uses a logarithmic x-axis.
- semilogy() is similar to plot but uses a logarithmic y-axis.
- loglog() is similar to plot but uses a logarithmic x and y axis.

Figures

- Adding plots to an existing graph: issue cmd hold on.
- A plot resides in a so-called figure. Multiple plots may be presented using multiple figures.
- To create a figure, enter figure
- To select a figure window, type figure(n)
- Reset a graphics figure by typing **clf**
- To reset all figures, enter clf reset.
- For more information, type help figure

Subplots

In addition to having multiple figures, it is also possible to display multiple plots in one figure. These plots are called subplots.

• Multiple plots are possible in one figure window by using the subplot cmd in lieu of the plot cmd.

Discrete data plots

When displaying discrete data sets (ie sampled data), using normal plots to display the data produces mostly mixed results.

A better alternative is the stem command. stem(x,y) display a stem from (x,0) to (x,y).

Stems can be customised exactly like the plot cmd. Stems can be combined with normal linear plots in one figure.

A stairstep plot can be created using the stairs(x,y) cmd. This displays a sample and hold technique on the data.

Stairs graphics example

Example:

```
alpha = 0.01;
beta = 0.5;
t=0:10;
f = exp(-alpha*t) .* sin(beta*t);
stairs(t,f)
hold on
plot(t,f,'--*')
hold off
```

Direction and contour vector graphs

With the compass plots, a polar plot can be drawn. Using the quiver cmd, a vector is shown in a two dimensional space.

Example: n=-2.0:0.2:2.0; [x,y,z] = peaks(n); % generate random data using peak contour(x,y,z,10)

This draws a contour plot. After computing the gradient of the vectors, we can display the vectors: [u,v] = gradient(z,0.2); hold on quiver(x,y,u,v) hold off A contour is an isoline plot. These can be produced with the contour cmd.

Additional plotting methods

In addition to normal linear and discrete plots, other plotting methods are available:

- •Bar and Area graphs
- •Pie charts
- •Histograms
- Interactive plotting

3D plotting

Matlab offers the possibility of drawing 3 dimensional plots. This is done using the (low level) surf cmd. Surf takes 4 arguments or less which provide the position an colour information of the plot.

The 3D equivalent of plot is the plot3(x,y,z) cmd. X, y and z are vectors of equal length.

Example:

t=0:pi/100:15*pi; plot3(sin(t),cos(t),t) axis square; grid on

Graphics miscellaneous

- Use the *plot editor* to customise your plots. Enter the plot editor by selecting 'Tools->Edit plot' on the plot menu.
- All formatting options are available
- You can move around text and or inserted pictures.
- You can modify line colours and styles.
- Bitmap files of well-known graphics formats (*jpeg, png, tiff, xwd* etc) can be used in the following ways:
- Save your plot as a bitmap file from the editor.
- From the matlab cmd line, use the imread, imwrite and image functions to read, write and display images.

Graphics printing

- All plots can be printed through a standard printing dialogue (in the figure window) or through the cmd window.
- set(gcf, property1, value1,, propertyn, valuen)
- print(-device, -options, -filename)

Plot exercise

Produce two separate plots of the following data simultaneously:

1. $x = \{10..40\}$

 $y = \ln(20 * \pi * x)$

2. f = 3 Hz, $\omega = 2\pi f$, $t = \{0 ... 2\}$, x = 0.5

 $y = 25 * \cos(2\pi * \omega * t - 0.5 * x)$

Plot exercise 2

We have a baseband carrier signal with a frequency of 1 Mhz. We want to modulate the signal with an audio signal, which (for our purposes) has a frequency of 15 kHz. The modulation methods will be Amplitude Modulation (AM) and Frequency modulation (FM).

The AM modulated signal y(t) of a modulation signal x(t) is : $y(t)=(1+b*x(t))*CA*\cos(\omega_c t)$

The FM modulated signal y(t) of a modulation signal x(t) is :

 $y(t) = CA\cos(\omega_c t + b * x(t))$

In these formulae, *b* is the modulation index, *CA* is the carrier amplitude and ω_c is the carrier frequency.

In order to visualise the modulation in the time domain, we need a plot with three subplots detailing:

- The unmodulated carrier signal
- The AM modulated signal
- The FM modulated signal

Produce these plots with a title, legends etc.

GUI design

- Matlab offers a complete GUI design toolkit.
- Advantages of this toolkit are:
- easy creation of user friendly, self-contained presentations.
- Platform independent
- Demonstration of a concept

GUI design methodology

Matlab GUI is built using object-oriented methodology.

- GUI objects are part of an object tree
- GUI objects generally wait for an event and respond using a callback mechanism.
- Once a GUI has been designed, the GUI tools write a .m file containing all the code for the GUI and a figure file containg a description of the GUI

GUI objects – uicontrol

- * Check boxes
- * Editable text fields
- * Frames
- * List boxes
- * Pop-up menus
- * Push buttons
- * Radio buttons
- * Sliders
- * Static text labels
- * Toggle buttons

GUI property editor

By clicking on an object, the GUI property inspector appears. This allows you to customise the object to your preferences. Think of it as attributes in a C++ object.

Property Inspector	1	
📺 figure (Untitled)		
- Alphamap		
- BackingStore	🖌 on	
BusyAction	🖌 queue	
- ButtonDownFcn		
Clipping	🖌 on	
CloseRequestFcn	closereq	
∎– Color		
— Colormap		
- CreateFcn		
— CurrentCharacter	0	
▪– CurrentPoint	[-0.167 -0.083]	
— DeleteFcn		
— Dithermap		
— DithermapMode	🛨 manual	
- DoubleBuffer	▼ off	
— FileName	/home/han/vakken/kenniscentrum/ms	sc
— HandleVisibility	🕶 on	
HitTest	👻 on	
— IntegerHandle	👻 on	- 11
- Interruptible	👻 on	- 11
- InvertHardcopy	👻 on	- 11
– KeyPressFcn		- 11
— MenuBar	▼ none	- 11
— Name	Untitled	- 11
- NextPlot	🕶 add	- 11
— NumberTitle	🕶 off	- 11
- PaperOrientation	👻 portrait	- 11
PaperPosition	[0.25 2.5 8 6]	- 11
- PaperPositionMode	\star manual	
🖅 – PaperSize	[8.5 11]	
PaperType	▼ usletter	∇

GUI Event callback

Event callback. A routine that executes whenever you activate the uicontrol object (e.g., when you click on a push button or move a slider). Define this routine as a string that is a valid MATLAB expression or the name of an M-file. The expression executes in the MATLAB workspace.

GUI examples

To see a number of Mathworks designed GUIs, type demo at the cmd prompt.

The help documentation has an excellent example for creating a GUI.

Animations

In Matlab, movies can be created by :

- saving a number of frames which are then displayed in a sequence. This is done using the getframe cmd
- Drawing, recalculating, erasing the screen and redrawing it at a fixed rate.

Animations

An example. Enter this text into a .m file and execute it:

```
Z = peaks; surf(Z)
```

axis tight

```
set(gca,'nextplot','replacechildren');
```

```
for j = 1:20
```

```
surf(sin(2*pi*j/20)*Z,Z)
```

```
F(j) = getframe;
```

end

movie(F,20) % Play the movie twenty times

Animations 2

A nice matlab animation demonstration is the result:

