HAN Matiab

lesson 3: programming

Instructor:

ir drs E.] Boks
Elecrical Engineering
Embedded Systems Engineering
phone:(026) 3658173
Room: D2.03
e-mail:ewout.boks@han.nl

Answers to lesson 2 questions

% plot exercise 1

% dataset 1
x1 =10:40;

vyl =log(20*pi*x1);

% exercise 2
f=3;
omega = 2*pi*f;

t=0:(1/5*%f):2; % 5x oversapmling
y2 = 25*cos(2*pi*omega*t -0.25);

% plotting
hl = figure;
h2 = figure;

% select the first
figure(h1);

plot(x1,y1);

% and another window
figure(h2);

plot(t,y2);

Answers to last week's guestions

% Exercise 3

% MSCS course

% baseband signal
Freq = 1E3;

% Carrier

CA =4,

% modulation
modfreq= 300;

b=1;

Answers to last week's guestions

% data sampling

sampling_freq = 4*Freq;

time = 0:(0.1/sampling_freq):5/Freq; % we evaluate 4 periods of the signal
y_baseband = CA*cos(2*pi*Freq*time);

y_modulator = CA*cos(2*pi*modfreq*time);

y_am = CA*(1+b).*cos(2*pi*modfreq*time).*cos(2*pi*Freq*time);
y_fm = CA*cos(2*pi*Freq*time+b*cos(2*pi*modfreq*time));

% produce the plots

subplot(4,1,1),stem(y_baseband,'go"), xlabel('Baseband signal');
subplot(4,1,2),stem(y_modulator,'bo'), xlabel('Modulator");
subplot(4,1,3),stem(y_am,'bo"), xlabel('AM modulated");

subplot(4,1,4),stem(y_fm,'ro'), xlabel('"FM modulated");

Programming outline

Matlab programming is centered around the creation of .m
files that become scripts or functions.

A script simply executes a program, whereas a function
accepts input data and produces output data.

Script is simply a body of text containing matlab cmds

Function definition adheres to a standard outline

.m file

The .m file can be created by typing edit <filename>. This
opens the default editor. The file is saved on the current
path .

The path is listed by typing pwd .
To see the particular path of a .m file, use the which cmd.

In order to make .m file executable, the addpath cmd can be
used to modity the $PATH variable. for example:

addpath('/home/johan/work/matlab/thesis/mfiles') adds a
path to this directory.

Note: on Unix and Mac OS X systems, use the / operator.
Win32 requires the \ operator.

Function definition

 Function definition:

function output | [output, output, ... output] = name(input ,input,,.....,input)

body of function. All variables declared and used in the body are
local variables whose scope ends at the boundaries of the
function

Global variables are defined by declaring them global , e.g :

global var;

Basic .m file layout

A basic .m file with a function definition should look like this:

function [g] =fact(n,m) % ftunction definition line
Inputs
output function name

Keyword
% Hello everybody this is what I do — H1 line

% Here goes the Help text
f = prod(n:m); % function body
g=1+5;

function example

function avg = avgscore(testscores, student,first,last)

global x,y;
for k=first:last

scores(k) = x*testscores.(student).week(k-y);

end

avg = sum(scores)/ (last-first+1);

Subfunction function within a
function defintion

« A subfunction is declared in the body of the
main function.

o All variables local to the main function are
out of scope for the subfunction.

e Subfunctions can be used to subdivide your
code in to easily digestable bits that can be
debugged more easily than one solid block of
code.

another function example
The besselj function in Matlab looks like this:

function [w,ierr] = besselj(nu,z,scale)

%BESSELJ Bessel function of the first kind.

% J=BESSELJ(NU,Z) is the Bessel function of the first kind, J_nu(Z).
% The order NU need not be an integer, but must be real.

% The argument Z can be complex. The result is real where Z is positive.

another function example
And continued.

% $Revision: 5.17 $ $Date: 2002/04/09 00:29:45

if nargin == 2, scale = 0; end

[msg,nu,z,siz] = besschk(nu,z); error(msg);

% Copyright 1984-2002 The MathWorks, Inc.

[w,ierr] = besselmx(real('J'"),nu,z,scale);

if ~isempty(w) & all(all(imag(w) == 0)), w = real(w); end

w = reshape(w,siz);

Programming operators

All the usual operators can be used in Matlab
programming:

« Arithmetic operators
« Relational operators

* logical operators

Programming tools

« Flow control : very similar to other high level
languages.

- If...else.... elseif ... end . Conditional execution based on
the outcome of a logic expression.

- Switch. Execution of a body based on the value of a
variable.

- For loop. Detined loop under control of a pre-set range.

- While. Undefined loop under control a logicical
condition.

- try-catch mechanism. This traps errors at runtime

If - else

An example :

ifn<0
disp('The input is negative');

elseif rem(n,2) == 0 % if n positive and even, divide by 2.
A=n/2;

else
A=mn+1)/2;

end

switch example

An example of the switch statement is:

switch var

case 1
disp('1");
case 12,3,4}
disp('Higher than 1 and less than 5');
otherwise
disp('5 or higher');
end

For loop example

An example of a defined loop:

for m=2:6
X(m) = 2*x(m-1);
for (n=m:12)
y(n) =y(m-1)*x(n);
end

end

While loop

An example of an undefined loop:

n=1;
while prod(1:n) < 1E10
n=n+1;

end

an undefined loop may be terminated by using the break

statement. The opposite continue statement enters the next
iteration of the loop.

Try catch mechanism

An example of the try-catch mechanism is:

try
statementl

statement?2

statementA
statementB

end

Expressions

In Matlab, four types of expression evaluation exist:

« Evaluation at run-time from the .m file or the cmd line.
 String evaluation using the eval() or feval() functions.

« Shell escape functions. These are run by typing their name
preceded by ! in the cmmd window.

« Evalution through regular expressions — texprocessing using
tokesn and operators.

Other data types

In addition to the standard scalar and matrix variables, Matlab
offers a number of other data types that are used in
programming;:

« Multidimensional arrays — matrix with a time dimension

« Cell arrays — array of elements that can contain other Matlab
data elements such as matrices or text.

e (Characters and text

 Structures — similar to C language struct elements

Other datatypes

Arrayk: (zeros|ones|rand|randn)(a,b,c,....k) creates a k
dimensional array.

Cell arrays are multidimensional arrays whose elements are
copies of other arrays: array = { array, array, array,

array, ;
Characters: text = 'Hello world!'

Structures: bodies of variables grouped in a structure — very
similar to a C language structure.

Creation of a Multidimensional

array
An example:

A=[539;365-5;23127],
A(::,2)=112-34;5466; -3 -100 -12];

The dimension (ie Timestamp or page) is given by the last
parameter.

an element on page (dimension) 1 of the matrix is accessed by:
A1) ;

Cell Array example

A cell array is a mechanism to store and retrieve large or
diffuse amounts of data. The key identifier is are the curly
brackets { and }. These are the cell array constructors
(comparable with the [and] in normal matrices.

An example:
A(1,1)={[123;456;789] };
A(1,2) = { 'Alexander the Great' };
A(2,1) ={3-5j };

A2,2) ={-pi: pi/25:pi};

Cell elements can be accessed either by typing the cell name or
using the celldisp or cellplot functions.

Structure

an example of building a structure is:
patient.name = 'Fred Flintstone'
patient.address = 'Bedrock”

patient.yob = 1966;

In the example, patient can have and index:
patient(3)

Accessing the structure data field is done through the dot (.)
operator:

patient.name;

This field can either be static or dynamic (evaluated at
runtime)

Vectorisation

A typical pittall for engineers accustomed to other

programming languages is that they omit using Matlab's matrix
abilities.

Code example:
x =0.01;
for k=1:1001
y(k)=log10(x);
x=x7+0.01;

end

This code is quite allright but not very efficient.

Vectorisation

The right way to accomplish this calculation:
x=0.01:0.01:10;
y = log10(x);

*This code computes the same result but much
faster and leaner.

*Use Matlab matrix engine whenever possible.

Function handles

A function can be referenced to by using a
function handle — analogous to a pointer to a
function in the C language. The handle is
defined by the @ sign.

Example: thandle = @sin ;

This handle can then be used in other
calculations using the feval (function
evaluation) cmd:

plot(data, teval(thandle,data));

Function functions

 In order to perform a specitic evaluation on a
function, so-called function functions exist
in Matlab. In this class, function functions
perform:

- Zero finding

- Optimisation

— Quadrature

- solving of ordinary ditferential equations

Function function example

Function y = humps(x)

y = 1./((x-0.3).224+0.01)+1./((x-0.9).72+0.04)-6;

x =0:0.002:1;
y=humps(x);

plot(x,y)

Then, when we plot this function, we observe a
minimum around x=0.63

Y=humps(x) plot

100 T T T T T

o0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Humps minimum

e (Create a function handle:

humpshandle = @humps;

« Then, enter the handle into the minimiser function
function:

minx = fminsearch(humpshandle, 0.5)
minx =
0.6370
miny = humps(minx)
ans =

11.2528

Programming ticks & tricks

Planning the Program

Using Pseudo-Code

Selecting the Right Data Structures
General Coding Practices

Naming a Function Uniquely

The Importance of Comments
Coding in Steps

Making Modifications in Steps
Functions with One Calling Function

Testing the Final Program

file:///usr/local/matlab65/help/techdoc/matlab_prog/ch8_pro7.html#6194
file:///usr/local/matlab65/help/techdoc/matlab_prog/ch8_pro7.html#6197
file:///usr/local/matlab65/help/techdoc/matlab_prog/ch8_pro7.html#6200
file:///usr/local/matlab65/help/techdoc/matlab_prog/ch8_pro7.html#20307
file:///usr/local/matlab65/help/techdoc/matlab_prog/ch8_pro7.html#33122
file:///usr/local/matlab65/help/techdoc/matlab_prog/ch8_pro7.html#6209
file:///usr/local/matlab65/help/techdoc/matlab_prog/ch8_pro7.html#48581
file:///usr/local/matlab65/help/techdoc/matlab_prog/ch8_pro7.html#20026
file:///usr/local/matlab65/help/techdoc/matlab_prog/ch8_pro2.html#16528
file:///usr/local/matlab65/help/techdoc/matlab_prog/ch8_pro7.html#6217

When proper programming still
results In errors

Then Matlab offers the .m file debugger.

From the editor, start the graphical debugger. This behaves like
other debuggers, ie one can:

e set breakpoints
estop execution
eevaluate variables

e]Jocate runtime errors

Matlab programming

Break

Questions

e Problem 1:

given the signal :
V(t)ZZO*cosz(wt)—ISSin3((3w—%w)*t) (V)
where oF 21t .

write a Matlab program tfunction that enables
you to easily plug in multiple values of f and t.

(Remember the difference between matrix and pointwise multiplications)

Questions (2)

« Problem 2:
You generate the following test signal:
- {=4Hz

— The time interval t = 0 to 3 seconds

What is an applicable time interval spacing (sampling time)?

Write a script in which you compute all time periods where the
signal has an amplitude larger than 30.

Questions (3)

 Problem 3 (advanced):

The signal V(t) (see problem 2) is received from a real
source with undesired noise added. The noise has an
rms value of 20V . Add this noise to your Matlab signal.

Write a function or script that determines the original
frequencies back from the polluted signal V(t) + noise.

« Analyse the plot: what are the identifiable frequency
components in the signal ?

« Do they correspond with the given frequencies of the
signal function ?

Questions (4)

Some tips for solving this exercise :

« An N-dimensional noise matrix can be made with the
rand(N) function.

 For the given angular frequency and time domain, compute
the Fourier Transtorm using Matlab's built-in FFT function.
For help, type help fit.

Y = fft(X,n) where X is a set of data and n specifies the number
of FFT points. Use n=512 in this case.

e Then, compute the power spectrum of the signal. The power
spectrum of signal Y is equal to Y * Y conjugated. Use
Matlab's built-in function conj() for this purpose.

« Plot the power spectrum for the applicable frequency range
(0..0.5*F

sampling

Matlab programming

End of lesson three

