Lesson 6

The Control toolkit

Instructor:
ir drs E.J Boks
Elecrical Engineering
Embedded Systems Engineering
phone:(026) 3658173
Room: D2.03
e-mail:ewout.boks@han.nl

Control Toolbox overview

e The Control System Toolbox builds on the
foundations of MATLAB to provide functions
designed for control engineering.

« The Control System Toolbox is a collection of
algorithms, written mostly as m-files, that
implements common control system design,
analysis, and modeling techniques.

« Convenient graphical user interfaces (GUIs)
simplify typical control engineering tasks.

Control Toolbox overview

« Control systems can be modeled as transfer functions, in
zero-pole-gain or state-space form, allowing you to use
both classical and modern control techniques. You can
manipulate both continuous-time and discrete-time
systems. Conversions between various model
representations are provided.

« Time responses, frequency responses, and root loci can be
computed and graphed. Other functions allow pole
placement, optimal control, and estimation. Finally, the
Control System Toolbox is open and extensible. You can
create custom M-files to suit your particular application.

Linear Models in the toolbox

« The Control System Toolbox supports the State
Space model representation:

« State-space models (SS) of the form

QZAx—I—Bu

dt
y=Cx+du

« where A, B, C, and D are matrices of appropriate
dimensions, x is the state vector, and u and y are
the input and output vectors.

Model representations

« The Control System Toolbox supports the Transfer Function model
representation:

« Transfer function (TF) example:

s—4
H(s)=
(s) s°+3s—7

Model representations

« The Control System Toolbox supports the Zero-Pole-Gain

representation:

« Zero-pole-gain (ZPK) model example :

(z4+2+3j)(z+2—3j)

H(z)= (z4+3)(z—2)

LTI Model representations

e The Control System Toolbox supports the
Frequency Response Data representation
(FRD).

e This model type is not further discussed
here. Please consult your Control Toolbox
manual for more information.

LTI object

« Internally, the Matlab Control Toolbox uses an general
control object called the LTI object to represent the
previously mentioned control model representations.

« LTI stands for Linear Time Invariant . A system is
considered an LTI system when :

- Asignal y is the response to a signal x, then a*y is the
response to a signal a*x.

- A delay of the input x results in an equal delay of the
outputy.

« The LTI object is a transfer function (matrix) of the system
represented.

Creating an LTI object

An LTI object of the type TF, ZPK, SS, or FRD is created whenever
you invoke the corresponding constructor function, tf, zpk, ss, or
frd. For example:

P =tf([1 2],{1 1 10]);

creates a TF object, P, that stores the numerator and denominator
coefficients of the transfer function:

s+2
Pls)=
() s“+s+10

This is a Single Input, Single Output (SISO) transfer function.

Creating a LTI object

You can also specify transfer functions as rational expressions in
the Laplace variable s by

1. Defining the variable s as a special TF model :

s = tf('s");

2.Entering your transfer function as a rational expression in s.
For example, once s is defined with tf as in 1,

h=s/(s"2 + 2*s +10);

produces the same transfer function as

h = tf([1 0],[1 2 10]);

MIMO model creation

Multiple Input, Multiple Output (MIMO) models may be created most
easily by forming a concatenation of SISO transfer function models.

Consider the following transfer function:
s—1

s+ 1
s+2

s2+4s+5
h11 =tf([1 -1],[1 1]);

h21 =tf([1 2],[1 4 5]);
H=[hll;h21];

H(s)=

H is now the transfer function constructed out of h11 and h21.

Creating a pure gain model

e Pure gain models may be created by using tf
with only one calling argument:

For example,
G=tf([10;2 1]);

produces the gain matrix:

O_
(G =
1-

N
2

Creating Zero Pole Gain models

Similar to creating transfer function models
using tf, zero pole gain models may be
created using the zpf function.

For example, typing:
h = zpk(0, [1-] 1+4j 2], -2);
creates the zero pole gain SISO model:

—2%gs
(s=2)(s—=1+j)(s—1—)

MIMO models using zpt are created with the
same procedure that was used with tf.

Creating State Space models

Use the command ss to create state-space models for : Z’_x: Ax+ Bu
t

where u is input, x is the state and y is the output. y=Cx+Du

sys = ss(A,B,C,D);

For a model with Nx states, Ny outputs, and Nu inputs, the following
applies:

« Aisan Nx-by-Nx real-valued matrix.
« Bis an Nx-by-Nu real-valued matrix.
« (Cisan Ny-by-Nx real-valued matrix.
« Disan Ny-by-Nu real-valued matrix.

This produces a State Space object sys that stores the state-space matrices
AB,CandD.

For models with a zero D matrix, you can use D = 0 (zero) as a shorthand
for a zero matrix of the appropriate dimensions.

A State Space example

« Consider the following model of an electric motor:
2
d0 ,do
—+2 52 +50=3]
dt dt

* @Ois the angular displacement and I is the driving current of

the motor. We would like to determine a state space model
describing the relation between the input and the angular

velocity of the motor.

State Space Example

Since I is the input, we set u=I. The angular velocity is the
output, so we set y=d0/dt.

Our state vector x describes the angular velocity and the
angular displacement:
0
X=1do
dr

Then, our state vectors A, B, C and D are:

Az[o 1] Bz[ol C=[03] D=0

State Space example

sys = ss([0 1;-5 -2],{0;3],[0 1],0);

to which MATLAB responds
a = c=
x1 x2
xl x2 yl 0 1.00000
x1 0 1.00000 d—
x2 -5.00000 -2.00000 ul
yl 0
b =
ul
x1 0

x2 3.00000

LTI object properties

e Each object has generic properties. Consult
your Matlab manual for them.

 In addition, specific properties related to the
model type exist.

« Each of these properties may be set with the
set cmd, or retrieved with the get cmd.

Converting between models

e The Control Toolbox allows easy conversion
between the different LTI model
representations:

- sys = ti(sys) Conversion to TF

- sys = zpk(sys) Conversion to ZPK

- sys = ss(sys) Conversion to SS

- sys = frd(sys,irequency) Conversion to FRD

« FRD models cannot be converted to other
models, but other models can be converted
to FRD, provided a frequency is given.

Conversion example

A State Space example sys is created by:
sys =ss(-2,1,1,3);

to a zero-pole-gain model by typing
zpk(sys)

to which MATLAB responds:

Zero/pole/gain:

3 (s+2.333)

Caution about conversions

 When manipulating or converting LTI models, keep in mind that:

e The three LTI model types TF, ZPK, and SS, are not equally well-suited
for numerical computations. In particular, the accuracy of
computations using high-order transfer functions is often poor.
Therefore, it is often preferable to work with the state-space
representation. In addition, it is often beneficial to balance and scale
state-space models using ssbal. You get this type of balancing
automatically when you convert any TF or ZPK model to state space
using ss.

« Conversions to the transfer function representation using tf may incur
a loss of accuracy. As a result, the transfer function poles may
noticeably differ from the poles of the original zero-pole-gain or state-
space model.

Caution about conversions

Conversions to state space are not uniquely defined in the SISO case, nor
are they guaranteed to produce a minimal realization in the MIMO
case. For a given state-space model sys,

ss(tf(sys))

may return a model with different state-space matrices, or even a different
number of states in the MIMO case. Therefore, if possible, it is best to
avoid converting back and forth between state-space and other model

types.

Time delays

» Since LTI models are time invariant, delays
may be introduced into any LTI model.

« Using the ioDelay, InputDelay, and
OutputDelay properties of LTI objects, you
can specity delays in both continuous- and
discrete-time LTI models. With these
properties, you can, for example, represent:

- LTI models with independent delays for each
input/output pair.

- State-space models with delayed inputs and/or
delayed outputs.

Operations on LTI models

You can perform basic matrix operations such as addition, multiplication,

or concatenation on LTI models. Such operations are "overloaded,"
which means that they use the same syntax as they do for matrices, but
are adapted so as to apply to the LTI model context.

The following operations are possible on LTI models:

Precedence and Property Inheritance

Extracting and Modifying Subsystems

Arithmetic Operations

Model Interconnection Functions
Continuous/Discrete-Time Conversions of LTI Models

Re-sampling of Discrete-Time Models

Model inheritance

« Operations like addition and commands like feedback
operate on more than one LTI model at a time. If these LTI
models are represented as LTI objects of different types (for
example, the first operand is TF and the second operand is
SS), it is not obvious what type (for example, TF or SS) the
resulting model should be. Such type conlflicts are resolved
by precedence rules. Specifically, TF, ZPK, SS, and FRD
objects are ranked according to the precedence hierarchy:

FRD >8S >7PK>TF

An addition of two models sys1 (a TF model) and sys2 (a SS
model) results in:

sys3 = sysl+sys2;

sys3 becomes a SS model as a result of the precedence rules.

Concatenation of LTI models

The Control System Toolbox provides a number of functions
to help with the model building process. These include
model interconnection functions to perform I/0
concatenation ([,], [;], and append), general parallel and
series connections (parallel and series), and feedback
connections (feedback and Ift). These functions are useful
to model open- and closed-loop systems.

For example, when it is desired to create a feedback model of
two systems sysl and sys2, use the feedback cmd.

sys = feedback(sys1,sys2) O] o <
sys = feedback(sys1,sys2,sign) L

sys2 et ———

sys = feedback(sysl1,sys2,feedin,feedout,sign)

Conversion between continuous
and discrete representation

The function c2d discretizes continuous-time
TF, SS, or ZPK models. Conversely, d2c
converts discrete-time TF, SS, or ZPK
models to continuous time. Several
discretization/interpolation methods are
supported, including zero-order hold
(ZOH), first-order hold (FOH), Tustin
approximation with or without frequency
prewarping, and matched poles and zeros.

LTI design tools

e To accelerate and facilitate the LTI design
process, two GUI tools are available:

- SISO design tool
- LTI Viewer

The SISO design tool

The SISO design tool

The SISO Design Tool is a graphical-user interface (GUI) that allows you to
use root-locus, Bode diagram, and Nichols plot techniques to design
compensators. The SISO Design Tool by default displays the root locus
and Bode diagrams for your imported systems. The two are
dynamically linked; for example, if you change the gain in the root
locus, it immediately affects the Bode diagrams as well.

Opening the SISO Design Tool
Type: sisotool at the cond prompt
to open the SISO Design Tool.

The LTI viewer

The LTI viewer

« The LTI Viewer is a graphical user interface (GUI) that supports ten plot
responses, including step, impulse, Bode, Nyquist, Nichols, zero/pole,
sigma (singular values), Isim, and initial plots. The latter two are only
available at the initialization of the LTI Viewer; see Itiview for more
information.

« The LTI Viewer is configurable and can display up to six plot type and
any number of models in a single viewer. In addition, you can display
information specific to the response plots, such as peak response, gain
and phase margins, and so on.

The LTI Viewer can be started by typing: Itiview at the cmnd prompt.

You can also open an LTI Viewer from the SISO Design Tool.

Control Toolbox exercise

e Consider an open loop transter function :

(s+1)

3
A)

H(s)=

H(s) is inherently unstable. Design a closed
loop system around H(s) using the SISO tool
that is stable. Pick your system parameters
(overshoot, phase margin etc) as you like.

