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What is DSP ?

 Digital Signal Processing (DSP) is concerned
with the digital representation of signals and
the use of digital processing to analyse,
modifiy or extract information from signals.

« Most signals in nature are analogue in form,
meaning that they vary continously with
time. Signals that are used in DSP are
derived from analogue signals. They have
been sampled at regular intervals and as
such they are of a discrete nature.



Why DSP ?
DSP has a number of advantages over
analogue signal processing:

e Guaranteed accuracy
» Perfect reproducibility
e No drift with time or temperature

e Miniaturisation of implementation based
on VLSI

 Greater flexibility

e Superior performance



DSP bottlenecks

DSP doesn't come without a price. The

following issues are of concern when using
DSP:

e Speed and cost
* Design and time

e System resolution vs cost



Two tools

« Matlab/Simulink otffers two different

tool

- T

- T

sets for DSP related engineering:

ne Signal Processing toolbox (Matlab)

he DSP blockset (Simulink)



Signal Processing Toolbox

« The toolbox supports a wide range of signal
processing operations, from wavetform
generation to filter design and
implementation, parametric modeling, and
spectral analysis.



Signal Toolbox contents

e The toolbox provides two categories of
tools:

— Command line tools
- GUI based tools



Command line tools

Analog and digital filter analysis

Digital filter implementation

FIR and IIR digital filter design

Analog filter design

Filter discretization

Spectral Windows Transforms

Cepstral analysis

Statistical signal processing and spectral analysis
Parametric modeling

Linear Prediction

Waveform generation



Interactive GUI based tools

Filter design and analysis
Window design and analysis
Signal plotting and analysis
Spectral analysis

Filtering signals



Signals in Matlab

Please recall that Matlab always works with discrete signals
(even when representing analogue signals).

For MATLAB being a scripting tool, an endless variety of
different signals is possible. Here are some statements that
generate several commonly used sequences, including the
unit impulse, unit step, and unit ramp functions:

Common Sequences: Unit Impulse, Unit Step, and Unit Ramp

t=(0:0.001:1)";

y = [1; zeros(99,1)]; % impulse

y=ones(100,1); % step (filter assumes 0 initial cond.)
y=t % ramp
y =t.A2;

y = square(4*t);



Signals in Matlab

 Signals may be derived from functions.
Special signal functions are:

- sawtooth generates a sawtooth wave with peaks at +1
and a period of 2m. An optional width parameter
specifies a fractional multiple of at which the signal's
maximuim OCCurs.

- square generates a square wave with a period of 2. An
optional parameter specifies duty cycle, the percent of
the period for which the signal is positive.

- The sinc function computes the mathematical sinc
function for an input vector or matrix x. The sinc
function is the continuous inverse Fourier transform of
the rectangular pulse of width and height 1.



Signals in Matlab

e Outside data can be read into matlab for
analysis. Depending on your data format,
you can do this in the following ways:

- Load data from an ASCII file or MAT-file with
the MATLAB load command.

- Read the data into MATLAB with a low-level file
/0 function, such as fopen, fread, and fscant.



Basic signal processing functions

e Two basic signal processing functions exist
in the Matlab basic package, namely:

— filter : This function filters a data sequence
using a digital filter which works for both real
and complex inputs. The filter is a direct form II
transposed implementation of the standard
difference equation.

— {ft : This function performs the discrete Fourier
Transform.



Data input

 In Signal theory, systems usually are
characterised by their transfer functions in
either the s domain or z domain.
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e Coefficients a and b are entered in rows
where their index number in the row
denotes their index in the transfer function
as listed above.



Transfer functions

« For example the filter function prototype is
listed as:

y = filter(b,a,X);

e b and a are the coetficients of the filter as
given in the previous slide and X is the input
signal.



Visualisation of data

In order to visualize data, several functions exist. Consider
this example:

The impulse response of a digital filter is the output arising from the unit
impulse input sequence defined as equal to one when n=0 and equal to
zero when n#0.

In MATLAB, you can generate an impulse sequence in a number of ways;
one straightforward way is

imp = [1; zeros(49,1)];
The impulse response of the simple filter b=1and a = [1 -0.9] is
h = filter(b,a,imp);

A simple way to display the impulse response is with the Filter
Visualization Tool (fvtool):

fvtool(b,a)



Visualisation of frequency

response

« To visualise a frequency response of a
system, the following two tools come in
handy:

- [h,w] =freqz(b,a,l) returns the frequency response vector h and the
corresponding angular frequency vector w for the digital filter whose
transfer function is determined by the (real or complex) numerator and
denominator polynomials represented in the vectors b and a, respectively.
The vectors h and w are both of length 1. The angular frequency vector w
has values ranging from 0 to radians per sample. When you don't specity
the integer |, or you specify it as the empty vector [], the frequency
response is calculated using the default value of 512 samples.

- h=1{reqs(b,a,w) returns the complex frequency response of the analog
filter specified by coefficient vectors b and a. fregs evaluates the frequency
response along the imaginary axis in the complex plane at the angular
frequencies in rad/sec specified in real vector w, which must contain more
than one frequency.



Filter design

o Filter design is a major topic in (Digital)
Signal Processing.

« Two classes of filters: Analog and digital
filters.

e Two subclasses exist: Infinite Impulse
Response (IIR) and Finite Impulse Response
(FIR, exists solely in the discrete domain).



Analog filter design

« Analog tilter design is supported with the
following functions:

- Bessel

 [b,a] = besself(n,Wn,options)

* [z,p,k] = besself(n,Wn,options)
 [A,B,C,D] = besself(n,Wn,options)
- Butterworth

e [b,a] = butter(n,Wn,options)
* [z,p,k] = butter(n,Wn,options)
 [A,B,C,D] = butter(n,Wn,options)




Analog filter design

- Chebyshev Type I

b,a] = chebyl(n,Rp,Wn,options)
z,p,k] = chebyl (n,Rp,Wn,options)

A,B,C,D] = chebyl (n,Rp,Wn,options)

- Chebyshev Type II

b,a] = cheby2(n,Rs,Wn,options)
7,p,k] = cheby2(n,Rs,Wn,options)

A,B,C,D] = cheby2(n,Rs,Wn,options)



Analog filter design

- Elliptic
* [b,a] = ellip(n,Rp,Rs,Wn,options)
* [z,p,k] = ellip(n,Rp,Rs,Wn,options)
* [A,B,C,D] = ellip(n,Rp,Rs,Wn,options)



Filter design requirements

» Filters are usually specitied with operational
performance parameters. In order to
calculate the minimally required filter size,
use the following tools:

- Butterworth

e [n,Wn] = buttord(Wp,Ws,Rp,Rs)
- Chebyshev Type |

e [n,Wn] = cheblord(Wp, Ws, Rp, Rs)
- Chebyshev Type II

e [n,Wn] = cheb2ord(Wp, Ws, Rp, Rs)
- Elliptic

* [n,Wn] = ellipord(Wp, Ws, Rp, Rs)



Reqguirements example

These are useful in conjunction with the filter design functions. Suppose
you want a bandpass filter with a passband from 1000 to 2000 Hz,
stopbands starting 500 Hz away on either side, a 10 kHz sampling
frequency, at most 1 dB of passband ripple, and at least 60 dB of
stopband attenuation. You can meet these specifications by using the
butter function as follows:

[n,Wn] = buttord([1000 2000]/5000,[500 2500]/5000,1,60)
n=
12
Wn =
0.1951 0.4080
[b,a] = butter(n,Wn);



Analogue filter example

Requirements: design an analogue lowpass
filter with :

e Stopband attenuation =40 dB

e Sharpest roll-off possible

 Ripple in passband acceptable to 0.5 dB
 Cutoftf frequency is 360 Hz



Analog filter example

% Lesson 7
% MSCS course, Hogeschool van Arnhem en Nijmegen
% example 1

% lowpass filter

angularfreq = 2*pi;

cutoff = 360;

passripple = 0.5;

stopatt = 40;

% Steepest roll-off possible --> we select an elliptic filter

% determine the order

[n Wn] = ellipord(cutoff*angularfreq,cutoff*1.1*angularfreq, passripple, ...
stopatt, 's");

% design the filter

[b a] = ellip(n,passripple,stopatt,Wn,'s");

% show the response

fregs(b,a);
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Exercisel

In a medical application, heart-beat audio data is sampled.

During the sampling session, it is unavoidable that certain
baseline wander and artefacts are introduced into the
signal due to patient body movement.

Design an analogue filter that meets the following
requirements to remove these unwanted signal additions:

e Passband: 10-45 Hz

« Stopband 0-5 Hz and 50 —inf Hz

« Stopband ripple: equal to 5 dB

e Stopband attenuation: larger than 20 dB
e Use a Chebychev type II filter



Digital filter design

e IIR class of filters:

Analog prototyping: use the analog design functions, but specify a
sampling frequency with the options.

Direct design: Design digital filter directly in the discrete time-
domain by approximating a piecewise linear magnitude response.

Generalized Butterworth design: Design lowpass Butterworth
filters with more zeros than poles.

Parametric modelling: find a digital filter that approximates a
prescribed time or frequency domain response.



Digital filter design

e FIR class of filters:

Windowing: apply window to truncated inverse Fourier transform
of desired "brick wall" filter: fir1, fir2, kaiserord

Multiband with Transition Bands: equiripple or least squares
approach over sub-bands of the frequency range: firls, remez,
remezord

Constrained Least Squares: minimize squared integral error over
entire frequency range subject to maximum error constraints:
fircls, fircls1

Arbitrary Response: arbitrary responses, including nonlinear phase
and complex filters: cremez

Raised Cosine: lowpass response with smooth, sinusoidal
transition: firrcos



Digital filter example

Filter requirements:

e Sampling frequency 1 kHz

« High pass filter, cutotf at 200 Hz

* No phase distortions in passband
e Max order = 20



Digital filter example

% Lesson 7

% MSCS course, Hogeschool van Arnhem en Nijmegen
% example 2

% digital highpass filter

samplefreq = 1E3;

cutoff = 200;

order = 20;

% No phase distortions --> FIR filter

% the desired frequency window



Digital filter example (continued)

f = [0 cutoff/(2*samplefreq) cutoff/(2*samplefreq) 1];
m=[0011];

% design the filter

b = fir2(order,f,m);

% show the response

[h w] = freqz(b,1,samplefreq);

plot(f,m,w/pi,abs(h))

legend('ldeal’,'fir2 Designed')

title('Example 2 : FIR high pass filter')
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Signal processing analysis tool

A tool exists to quickly evaluate and design
signal processing data or filters. This is the
Signal & Analysis Processing (SPA) tool.

« To start the SPA tool, type sptool at the cmd
prompt. Import the a and b vectors from
example 1, you can evaluate the filter's
performance more interactively.



Filter design tool

« Combining most filter design tools and the
sptool into one design tool: the Filter Design
and Analysis (FDA) tool.

« The tools is an excellent and very powertul,
easy to use GUI-based tool that lets the
designer quickly specity, design and
evaluate any type of filter.

« To start the FDA tool, type fdatool on the
cmd line.



Statistical filter design

e The Signal Processing Toolbox provides
tools for estimating important functions of
random signals.

 In particular, there are tools to estimate
correlation and covariance sequences and
spectral density functions of discrete
signals.



Correlation and covariance
calculation

e The functions xcorr and xcov estimate the
cross-correlation and cross-covariance
sequences of random processes. They also
handle autocorrelation and autocovariance
as special cases.

Example:
x=[11111]}
V=X

XyC = XCOIT(X,)

Xyc =
1.0000 2.0000 3.0000 4.000 5.0000 4.0000 3.0000 2.0000 1.0000



Signal spectral analysis

e The goal of spectral estimation is to describe
the distribution (over frequency) of the
power contained in a signal, based on a
finite set of data. Estimation of power
spectra is useful in a variety of applications,
including the detection of signals buried in
wide-band noise.



Spectral analysis tools

Periodogram

- Power spectral density estimate: periodogram
Welch

- Averaged periodograms of overlapped, windowed signal sections:
pwelch, csd, tfe, cohere

Multitaper

- Spectral estimate from combination of multiple orthogonal
windows (or "tapers"): pmtm

Yule-Walker AR

- Autoregressive (AR) spectral estimate of a time-series from its
estimated autocorrelation function: pyulear

Burg

- Autoregressive (AR) spectral estimation of a time-series by
minimization of linear prediction errors: pburg



Spectral analysis tools

Covariance

- Autoregressive (AR) spectral estimation of a time-series by
minimization of the forward prediction errors: pcov

Modified Covariance

- Autoregressive (AR) spectral estimation of a time-series by
minimization of the forward and backward prediction errors:
pmcov

MUSIC

- Multiple signal classification: pmusic

Eigenvector

- Pseudospectrum estimate: peig



DSP blockset overview

The Matlab DSP Blockset is a collection of block libraries for
use with the Simulink dynamic system simulation
environment.

The DSP Blockset libraries are designed specifically for digital
signal processing (DSP) applications, and include key
operations such as

— Classical filters

- Multirate filters

- adaptive filtering

- matrix manipulation
- linear algebra

— Statistics

- time-frequency transforms



DSP Blockset overview ||

The DSP blockset therefore has the following
features:

« Frame-Based Operations

e Matrix Support

« Adaptive and Multirate Filtering
 Statistical Operations

e Linear Algebra

« Parametric Estimation

e Real-Time Code Generation (optional)



DSP Blockset Features

Frame-Based Operations:

« Most real-time DSP systems optimize throughput rates by processing
data in "batch" or "frame-based" mode, where each batch or frame is a
collection of consecutive signal samples that have been buffered into a
single unit. By propagating these multisample frames instead of the
individual signal samples, the DSP system can best take advantage of
the speed of DSP algorithm execution, while simultaneously reducing
the demands placed on the data acquisition (DAQ) hardware.

« The DSP Blockset delivers this same high level of performance for both
simulation and code generation by incorporating frame-processing
capability into all of its blocks. A completely frame-based model can
run several times faster than the same model processing sample-by-
sample; faster still if data sources are frame based.



DSP Blockset Features

Matrix Support:

The DSP Blockset takes full advantage of the matrix format of Simulink.

Some typical uses of matrices in DSP simulations are

General two-dimensional array: a matrix can be used in its traditional
mathematical capacity, as a simple structured array of numbers. Most
blocks for general matrix operations are found in the Matrices and
Linear Algebra library.

Factored submatrices : a number of the matrix factorization blocks in
the Matrix Factorizations library store the submatrix factors (i.e., lower
and upper submatrices) in a single compound matrix. See the LDL
Factorization and LU Factorization blocks for examples.

Multichannel frame-based signal: the standard format for
multichannel frame-based data is a matrix containing each channel's
data in a separate column. A matrix with three columns, for example,
contains three channels of data, one frame per channel. The number of
rows in such a matrix is the number of samples in each frame.



DSP Blockset Features

Adaptive and Multirate Filtering:

« The Adaptive Filters and Multirate Filters libraries provide key tools for
the construction of advanced DSP systems. Adaptive filter blocks are
parameterized to support the rapid tailoring of DSP algorithms to
application-specific environments, and effortless "what if"
experimentation. The multirate filtering algorithms employ polyphase
implementations for efficient simulation and real-time code execution.



DSP Blockset Features

Statistical Operations:

« Use the blocks in the Statistics library for basic statistical analysis.
These blocks calculate measures of central tendency and spread (e.g.,
mean, standard deviation, and so on), as well as the frequency
distribution of input values (histograms).



DSP Blockset Features

Linear Algebra:

« The Matrices and Linear Algebra library provides a wide variety of
matrix factorization methods, and equation solvers based on these
methods. The popular Cholesky, LU, LDL, and QR factorizations are all
available.

« Uitwerken —wat is autoregressie ..



DSP Blockset Features

Parametric Estimation:

e The Parametric Estimation library provides a number of methods for
modeling a signal as the output of an AR system. The methods include
the Burg AR Estimator, Covariance AR Estimator, Modified Covariance
AR Estimator, and Yule-Walker AR Estimator, which allow you to
compute the AR system parameters based on forward error
minimization, backward error minimization, or both.



DSP Blockset Features

Real-Time Code Generation (optional) :

« The separate Real-Time Workshop can be utilized to generate ANSI C
code for models containing blocks from the DSP Blockset.



DSP blockset set-up

The DSP Blockset contains a collection of
blocks organized in a set of nested libraries.

One way to explore the blockset is to expand
the DSP Blockset entry in the Simulink
Library Browser.

The other way to commence with the DSP
blockset is to enter dsplib at the cmd
prompt.
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DSP Sources

DSP Sources are blocks that generate discrete-time signals
such as sine waves and uniform random signals. These
signals are tailored towards DSP applications and include:

« Chirp: generate a swept-frequency cosine (chirp) signal

« Constant Diagonal Matrix. generate a square, diagonal
matrix

« Constant Ramp: generate a ramp signal with length based
on input dimensions

« Discrete Impulse: generate a discrete impulse



DSP Sources Il

DSP Constant. generate a discrete-time or continuous-time
constant signal

Identity Matrix: generate a matrix with ones on the main
diagonal and zeros elsewhere

Multiphase Clock: generate multiple binary clock signals

N-Sample Enable: output ones or zeros for a specified
number of sample times

Random Source: generate randomly distributed values
(Gaussian or uniform)

Signal From Workspace: import a signal from the MATLAB
workspace

Sine Wave: generate a continuous or discrete sine wave

Triggered Signal From Workspace: import signal samples
from the MATLAB workspace when triggered



DSP Sinks
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DSP sinks

DSP Sinks are blocks for exporting signals to the MATLAB workspace:

Display (Simulink block): show the value of the input
Matrix Viewer: display a matrix as a color image

Signal To Workspace: write simulation data to an array in the MATLAB
workspace

Spectrum Scope: compute and display the short-time FFT of each input
signal

Time Scope (Simulink Block): display signals generated during a
simulation

Triggered To Workspace: write the input sample to an array in the
MATLAB workspace when triggered

Vector Scope: display a vector or matrix of time-domain, frequency-
domain, or user-defined data



Standard filters
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Standard analog and digital filters

These DSP blocks are intened for designing, analyzing, and
implementing various standard filters.

Analog Filter Design: Design and implement an analog filter

Digital Filter: Filter inputs with a specified time-varying or static digital
FIR or IIR filter

Digital Filter Design: Design, analyze, and implement a variety of
digital FIR and IIR filters.

Filter Realization Wizard: Automatically construct filter realizations
using Sum, Gain, and Unit Delay blocks

Overlap-Add FFT Filter. Implement the overlap-add method of
frequency-domain filtering

Overlap-Save FFT Filter: Implement the overlap-save method of
frequency-domain filtering



Exercise 2

e The analog filter designed in exercise 1 must be
validated in a simulation.

« Take the analogue filter requirements and
implement them in a Simulink model.

(hint: use the DSP filter realization tools)

e Implement your filter into a Simulink model and
insert a heart-beat signal ( 25 Hz) with added white
noise and a linear disturbance at 70 Hz. Validate
your filter design by examining the filter output.



Adaptive Filters
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Adaptive filters

adaptive filters blocks are used for computing
filter estimates of an input using various
algorithmes:

« Kalman Adaptive Filter. compute filter estimates for an
input using the Kalman adaptive filter algorithm

« LMS Adaptive Filter. compute filter estimates for an input
using the LMS adaptive filter algorithm

* RLS Adaptive Filter. compute filter estimates for an input
using the RLS adaptive filter algorithm



Multirate filters
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Multirate filters

Multirate Filters blocks are used when
implementing various multirate filters:

* Dyadic Analysis Filter Bank: decompose a signal into
components of equal or logarithmically decreasing
frequency subbands and sample rates

* Dyadic Synthesis Filter Bank: reconstruct a signal from its
multirate bandlimited components.

* FIR Decimation: filter and downsample an input signal

* FIR Interpolation: upsample and filter an input signal



Multirate filtersl|

* FIR Rate Conversion: upsample, filter, and downsample an
input signal

» Two-Channel Analysis Subband Filter: decompose a signal

into a high-frequency subband and a low-frequency
subband

« Two-Channel Synthesis Subband Filter: reconstruct a signal

from a high-frequency subband and a low-frequency
subband



Multirate filter example

 Please visit the 'multirate filtering' section ot
the DSP Blockset demos to see a few
examples of this technique



End

Questions ?

End of session 7



